
CS 113 – Computer
Science I

Lecture 23 – Exceptions
Adam Poliak
12/06/2022

Announcements

• Assignment 11
• Due Thursday 12/08
• Optional/extra credit

• Lab: additional office hours

Exercise

Write a program, Cake.java, that implements a Cake class that stores a
cake name and cost. In main(), read in a CSV file of cakes into an
ArrayList and sort them from least expensive to most expensive.

$ java-introcs Cake cakes.txt
Red velvet cake: $2.0
Chocolate cake: $3.5
Strawberry cake: $4.5
Cheesecake: $6.99

Exceptions

An exception is a disruptive event that occurs while a program is running
typically indicates a runtime error

Examples: IndexOutOfBoundsException, NumberFormatException

When an error occurs, we throw the exception. Any function that is currently
on the stack can catch the exception.

• Functions that do not catch the exception are aborted
• If no one catches the exception, the program terminates and prints the exception to

the console

Sedgewick and Wayne, page 465

Exceptions are objects

Throwing an exception
public static void bar() {
throw new RuntimeException("An error happened in bar()");

}

Catching an exception

try {
bar();

}
catch (RuntimeException e) {
System.out.println("An exception occured: "+e.getMessage());
e.printStackTrace();

}

Draw the stack diagram

public static void bar() {
throw new RuntimeException(“ERROR");

}

public static void foo() {
try {
bar();

}
catch (RuntimeException e) {
System.out.println(“Exception: "+e.getMessage());
e.printStackTrace();

}
System.out.println("Hello!");

}

public static void main(String[] args) {
foo();

}

Exercise: Write a program that catches an
ArrayOutOfBoundsError

Exceptions: best practices

• A production-level application should never throw and uncaught
exception
• e.g. the user should never encounter an exception.
• thrown exceptions are bugs

• Throwing an exception is meant to help the developer
• Serious mistakes that will derail further execution of the program
• Errors related to undefined behaviors typically throw exceptions

• divide by zero
• adding vectors with mis-matches sizes
• out of array bounds

Exceptions: best practices Exceptions are slow and
should not be used for
routine error checking
• For example, checking

whether a user input an
integer

class CheckInteger {
public static void main(String[] args) {

int value = 0;
boolean valid = false;
while (!valid) {
System.out.print("Enter an integer: ");
String input = System.console().readLine();
try {
value = Integer.parseInt(input);
valid = true;

}
catch (RuntimeException e) {
System.out.println("Sorry, this value is invalid");

}
}

System.out.println("You entered "+value);
}

}

NO

