
CS 113 – Computer
Science I

Lecture 20 –Recursion
Adam Poliak
11/22/2022

Announcements

• Assignment 09
• Due Wednesday 11/23

• No code jam this week during lab

Recursion

An iterative algorithm uses a loop to perform repetition

Recursion - a function that calls itself
Conceptually like a loop (code repeats)
Easier way to solve “similar” problems

Creating a recursive algorithms

Rule that “does work” then ”calls itself” on a smaller
version of the problem

Base case that handles the smallest problem
Prevents “infinite recursion”

Recursion example - tower

Draw a tower with height 6 blocks

Rule: Place one block and then draw a tower slightly shorter
Base case: When the height is 0 draw nothing

Recursion example – print “hello” 5 times

Rule: Print “hello” once and then print “hello” 4 times
Base case: When the number of times to print is 0, stop printing

Recursive functions – base case

Conditional statement that prevents infinite repetitions

Usually handles cases where:
input is empty
problem is at its smallest size

Recursion Example - Factorial

𝑛! = 𝑛 ∗ 𝑛 − 1 ∗ 𝑛 − 2 ∗ …∗ 1

3! = 3 * 2 * 1 = 6

4! = 4 * 3 * 2 * 1 = 24

Visualizing recursion – Factorial example

factorial(5) =
= 5 * factorial(4)
= 5 * 4 * factorial(3)
= 5 * 4 * 3 * factorial(2)
= 5 * 4 * 3 * 2 * factorial(1)
= 5 * 4 * 3 * 2 * 1

Recursion Example – Contains letter

Recursion Visualization – Contains letter

contains(“l”, “apple”) =
contains(“l”, “apple”, 0)

contains(“l”, “apple”, 1)
contains(“l”, “apple”, 2)

contains(“l”, “apple”, 3)
return true

Recursion Example – printList

Write a recursive function that prints the contents of an array

Recursion limitations

• Limited number of times we can recurse
• Stackoverflow – too many frames

• Potentially memory inefficient
• If we copy data in subproblems

• Performance: might duplicate unnecessary work

