
CS 113 – Computer
Science I

Lecture 4 – Loops
Adam Poliak
09/13/2022

Announcements

• Assignment 00
• Good job!
• Grades coming out soon

• Assignment 01
• Due Thursday 09/15

• Office hours:
• Adam’s: 10:30-11:30am on Wednesdays

Agenda

• Announcements
• Recap
• String Comparison
• Loops

Comparing strings

• In Java, you cannot directly compare strings: use compareTo
• Javadocs: https://docs.oracle.com/javase/7/docs/api/java/lang/String.html

Returns:
• the value 0 if the argument string is equal to this string;
• a value less than 0 if this string is lexicographically less than the string argument;
• and a value greater than 0 if this string is lexicographically greater than the string

argument.

Comparing strings

• In Java, you cannot directly compare strings: use compareTo

String a = “apple”;
String b = “banana”;
if (a.compareTo(b) == 0) {

System.out.println(“a and b match!”);
}
if (a.compareTo(b) != 0) {
System.out.println(“a and b DO NOT match!”);
}

Lexicographic Values/Order

• Strings are ordered lexicographically

• Generally, the same order as alphabetical order, with some caveats

• The characters of a string each correspond to a number

ASCII

https://www.asciitable.com/

StringCompare.java
String first = "a";
String second = "A";
int asciia = (int) first.charAt(0);
int asciib = (int) second.charAt(0);
System.out.println("ASCII Code for "+first+" is " + asciia);
System.out.println("ASCII Code for "+second+" is " + asciib);

if (first.compareTo(second) == 0) {
System.out.println(first+" is equal to "+second);

}
else if (first.compareTo(second) < 0) {

System.out.println(first+" is less than "+second);
}
else if (first.compareTo(second) > 0) {

System.out.println(first+" is greater than "+second);
}

$ java StringCompare
ASCII Code for a is 97
ASCII Code for A is 65
a is greater than A

Exercise: IsPrimary

Write a program that asks the user for a color and prints whether the
color is primary or not.

• The primary colors are “red”, “yellow”, “blue”

• All other inputs are non-primary
$ java IsPrimary
Enter a color: green
green is not primary

$ java IsPrimary
Enter a color: blue
blue is primary

Agenda

• Announcements
• Recap
• String Comparison
• Loops

Exercise

Suppose we wanted to ask the user for 6 numbers (int)
and output their sum?

Loops

• Easy way to repeat some computation

• Two kinds of loops:
• While
• For

• Loops repeat block of code until the condition becomes false

Example: While Loop

int val = 0;
String valStr = "";
int sum = 0;

int count = 0;
while (count < 6) {

System.out.print("Enter a number: ");
valStr = System.console().readLine();
val = Integer.parseInt(valStr);
sum = sum + val;
count = count + 1;

}
System.out.println("The sum is "+sum);

Tracing Loops

int sum = 1;
int count = 0;
while (count < 3) {

sum = sum + 2;
count = count + 1;

}

Iteration Count < 6 count sum

Tracing Loops

int sum = 1;
int count = 0;
while (count < 3) {

sum = sum + 2;
count = count + 1;

}

Iteration Count < 6 count sum

0 T 0 1

Tracing Loops

int sum = 1;
int count = 0;
while (count < 3) {

sum = sum + 2;
count = count + 1;

}

Iteration Count < 6 count sum

0 T 0 1

1 T 1 3

Tracing Loops

int sum = 1;
int count = 0;
while (count < 3) {

sum = sum + 2;
count = count + 1;

}

Iteration Count < 6 count sum

0 T 0 1

1 T 1 3

2 T 2 5

Tracing Loops

int sum = 1;
int count = 0;
while (count < 3) {

sum = sum + 2;
count = count + 1;

}

Iteration Count < 6 count sum

0 T 0 1

1 T 1 3

2 T 2 5

3 T 3 7

Exercise: Tracing loops

int sum = 10;
int count = 0;
while (count < 6) {

sum = sum - 1;
count = count + 2;

}

Iteration Count < 6 count sum

Accumulator pattern

Idea: Repeatedly update a variable (typically in a loop)

Pattern:
1. Initialize accumulator variable
2. Loop until done

1. Update the accumulator variable

Convenience syntax: Assignment

Because updating variable values is so common, language such as Java
provide shorthand syntax for it
• Analogy: contractions in English

sum = sum + 2
count = count + 1
count = count – 1
product = product * 2
divisor = divisor / 2
message = message + “lol!”

Convenience syntax: Assignment

Because updating variable values is so common, language such as Java
provide shorthand syntax for it
• Analogy: contractions in English

sum = sum + 2
count = count + 1
count = count - 1
product = product * 2
divisor = divisor / 2
message = message + “ lol”

Convenience syntax: Assignment

Because updating variable values is so common, language such as Java
provide shorthand syntax for it
• Analogy: contractions in English

sum = sum + 2 sum += 2
count = count + 1 count += 1
count = count - 1 count -= 1
product = product * 2 product *= 2
divisor = divisor / 2 divisor /= 2
message = message + “ lol” message += “ lol”

Exercise: Write a program that computes
powers of 2
Write a program, LoopPow2.java, that computes powers of twos. For
example,

$ java LoopPow2
Enter an exponent: 0
2 to the power of 0 is 1

$ java LoopPow
Enter an exponent: 1
2 to the power of 1 is 2

$ java LoopPow
Enter an exponent: 4
2 to the power of 4 is 16

Example: For Loop

int val = 0;
String valStr = "";
int sum = 0;

for (int count = 0; count < 6; count = count +1) {
System.out.print("Enter a number: ");
valStr = System.console().readLine();
val = Integer.parseInt(valStr);
sum = sum + val;

}
System.out.println("The sum is "+sum);

Exercise: Tracing loops

String pattern = ””;
for (int i = 0; i < 3; i++) {

pattern = pattern + “*”;
}
System.out.println(pattern);

Exercise: LoopPattern
$ java LoopPattern
Enter a length: 5
--*

$ java LoopPattern
Enter a length: 10
--*-*-*-

$ java LoopPattern
Enter a length: 0

$ java LoopPattern
Enter a length: 1
*

Exercise: Nested loops

$ java Square
Enter a size: 5

$ java Square
Enter a size: 1
*

$ java Square
Enter a size: 0

